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SUMMARY

In order to use the optimal control techniques in models of geophysical flow circulation, an application
to a 1D advection–diffusion equation, the so-called Burgers’ equation, is described. The aim of optimal
control is to find the best parameters of the model which ensure the closest simulation to the observed
values. In a more general case, the continuous problem and the corresponding discrete form are
formulated. Three kinds of simulation are realized to validate the method. Optimal control processes by
initial and boundary conditions require an implicit discretization scheme on the first time step and a
decentered one for the non-linear advection term on boundaries. The robustness of the method is tested
with a noised dataset and random values of the initial controls. The optimization process of the viscosity
coefficient as a time- and space-dependent variable is more difficult. A numerical study of the model
sensitivity is carried out. Finally, the numerical application of the simultaneous control by the initial
conditions, the boundary conditions and the viscosity coefficient allows a possible influence between
controls to be taken into account. These numerical experiments give methodological rules for applica-
tions to more complex situations. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In order to model the coastal oceanic circulation, special degenerated forms of the Navier–
Stokes equations are often considered, usually called the Shallow Water equations (see
Leendertse and Liu [1] or Nihoul and Jamart [2] for examples). For a 1D evolution problem,
these equations take the form of a non-linear advection–diffusion model given by the viscous
Burgers’ equation [3], on which the present study has been focused. These equations are
controlled by functional parameters that are to be fitted.

Since the pioneering work of Sasaki [4], the data assimilation method has been used in
meteorology by Marchuk [5] and Le Dimet and Talagrand [6], and in oceanography by Bennet
and McIntosch [7] and Provost and Salmon [8]. Ideas and mathematical concepts of optimal
control theory were formalized by Lions [9] 30 years ago and have since received attention for
applications in oceanography (e.g. Begis and Crepon [10] or Devenon [11]). The aim of optimal
control is to find the best parameters of the model to simulate the closest computed values to
the observed ones. This variational method involves a minimization of a cost function which
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is the norm of the difference between the computed and observed values. An algorithm is
obtained via the so-called adjoint equations and this minimization for the construction of the
cost function gradient with respect to the parameters. Once the gradient is determined, the
minimization can be performed using any numerical optimization algorithm.

Some authors have already dealt with this kind of problem. Dean and Gubernatis [12]
introduced a pointwise control. Lellouche et al. [13] focused their study on the control by
boundary conditions. This approach is sufficient if it is considered that in the more common
cases, the control by boundary conditions is more influential than the control by initial
conditions and by the viscosity coefficient. Nevertheless, in order to use optimal control in
more complex models, the three types of controls are studied for this simple equation.

In the first part, the optimal control problem will be developed for the general case of
control by initial and boundary conditions and by the viscosity coefficient. The suggested
method will then be validated by three phases of numerical experiments:

– the control by the initial and boundary conditions,
– the specific control by the viscosity coefficient as a distributed variable,
– the simultaneous control by the three parameters.

Perspectives and conclusions will end our reflection.

2. THE SIMULTANEOUS OPTIMAL CONTROL PROBLEM

2.1. The continuous problem

According to the previous section, the chosen numerical model is the viscous Burgers’
equation in a one space dimension. If we interpret the scalar function y(x, t) as modeling the
velocity at a point x and a time t, then the governing equation assorted with suitable boundary
and initial conditions is given by

Í
Ã

Ã

Ã

Ã

Á

Ä

(y
(t

+
1
2
((y2)
(x

−
(

(x
�

n
(y
(x
�

=0

y(x, 0)=u(x)
y(0, t)=Y1(t)
y(L, t)=Y2(t)

in Q

for x� (0, L)
for t� (0, T)
for t� (0, T)

(1)

where Q= (0, L)× (0, T). The viscosity coefficient n(x, t) can vary in space and time. The
problem is to control this system in order to produce a desired state, denoted ŷ, concerning the
modeled quantity y. The control procedure consists of finding the optimal control, Copt=
(uopt, Y1opt, Y2opt, nopt) (and the corresponding optimal solution yopt) which minimizes a cost
criterion measuring the Euclidean norm of the difference between y and ŷ. In the general case,

y=y(C)=y(u, Y1, Y2, n), (2)

with u�L2(0, L), Y1, Y2�L2(0, T) and n�L2(Q).
Considering the cost function,
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the problem is to find

min{J(C): C�jac}, (4)

with jac=L2(0, L)×L2(0, T)×L2(0, T)×L2(Q), the set of admissible controls.
Let us introduce the directional derivative of J at C�jac along f�jac, given by

J %(C, f)= lim
d�0

J(C+df)−J(C)
d

. (5)

Assuming J %(C, f) exists for all f and that J %(C, . ) is linear and continuous in f, the gradient
9J(C) will be defined as the linear form, satisfying

J %(C, f)=�9J(C), f� Öf�jac, (6)

where � ., . � is the dual product which is also, in this case, the inner product in jac.
To solve Equation (4), it is not possible to resolve J %(C, f)=0 directly. We are led to

identify 9J(C) from J %(C, f). From Equations (3) and (5)

J %(C, f)=�y− ŷ, y %�=
1

LT
& T

0

& L

0

(y− ŷ)y %(C, f) dx dt, (7)

where

y %(C, f)= lim
d�0

y(C+df)−y(C)
d

. (8)

We now have to find conditions verified by y %. Let C= (u, Y1, Y2, n) and f= (6, 81, 82, a)
belong to the space jac, putting down the two systems fulfilled by y(C) and y(C+df)
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y(x, 0)(C+df)=u(x)+d6(x) for x� (0, L)
y(0, t)(C+df)=Y1(t)+d81(t) for t� (0, T)
y(L, t)(C+df)=Y2(t)+d82(t) for t� (0, T).

(10)

By subtraction of Equation (9) from Equation (10) and division by d which tends to zero,
the expression verified by y %, called the linearized Burgers’ tangent model, Öf=
(6, 81, 82, a)�jac is given by
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As in Le Dimet and Talagrand [6] or Lellouche et al. [13], the aim is to use the conditions
in Equation (11) verified by y % to evaluate Equation (7). The idea is to introduce a function,
p(x, t), in order to substitute f for y % in Equation (7). By using Equation (11), 9J(C) is then
identified as in Equation (6). The new variable p(x, t), called the adjoint variable, verifies an
expression of the same degree of complexity of those verified by y %,
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This model, called the adjoint model, allows the calculation of J %.

Öf= (6, 81, 82, a)�jac,

J %(C, f)=
1

LT
& T

0

& L

0

�(p
(t

+y
(p
(x

+
(

(x
�

n
(p
(x
��

y %(C, f) dx dt. (13)

An integration by part of Equation (13) gives an expression of J % including the conditions
of (11)
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Then the gradient’s components are completely determined
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Owing to the successive resolutions of both the direct and adjoint models, we can identify
the gradient’s components and build an iterative resolution method to find the optimal
controls and minimize the cost function. Figure 1 summarizes this method. The minimization
process of J is computed by the quasi-Newton variable storage (or limited memory) method,
whose computer code was given by Gilbert and Lemarechal [14].

2.2. The discrete problem

In Section 2.1, the gradient of the cost function for a continuous problem in time and space
has been expressed. In practice, it is a discrete numerical model that is only an approximation
of the continuous equation.

Let the time interval (0, T) (respectively, the space interval (0, L)) be divided into N
subintervals (respectively, into I+1 subintervals), each of length Dt=T/N (respectively,
Dx=L/(I+1)). The discrete version of Equations (3) and (4) is then to find

min{J0 (C): C�RI+2N+N× (I+2)}, (17)

with

J0 (C)=
1

2NI
%
I

i=1

%
N

n=1

�yi
n− ŷ i

n�2, (18)

Figure 1. Sketch of the solving algorithm. J is minimized until 9J(C) is less than a threshold value e.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 113–128 (1998)



Y. LEREDDE ET AL.118

where yi
n (respectively, ŷ i

n) is the approximation of y(iDx, nDt) (respectively, the observed
value y at point (iDx, nDt)).

The problem now is to choose the ‘good’ discretization of the two models (Equations (1) and
(12)). The direct model (1) is not linear but the linearized tangent model (11) and the adjoint
model (12) are. So, both can be set as discrete linear systems governed by matrices. The
adjointness property between Equations (11) and (12) means that their two matrices must
transpose each other. By transposing the linearized tangent matrix, the expressions of the
discrete adjoint model and the discretized gradient’s components can be computed. On an
other hand, a ‘good’ discretization of the continuous problem must give the same expressions
as those given by the preceeding matrix approach. Lellouche et al. [13] showed that for this
requirement, a decentered discretization of the advection term on the boundaries is necessary.
For the same reasons, to avoid unwanted terms in the gradient related to initial conditions, an
implicit time discretization on the first time step must be used. A specific time discretization for
the following steps is not needed. Nevertheless, an implicit scheme for every time step is
chosen. This also guarantees the stability criteria. Respecting these space and time rules, a
discretized direct model is given by

– Initial conditions: yi
0=ui, 15 i5I.

– Boundary conditions: y0
n=Y1

n and yI+1
n =Y2

n, 15n5N.
– Discretization scheme, for n=1, . . ., N :

i=1:

1
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n )(yi+1
n −yi

n)− (n i−1
n +n i

n)(yi
n−yi−1

n ))

+
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2Dx
(yi+1

n y i+1
n −yi

ny i
n)=0.

25 i5I−1:

1
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1
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+
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A general discretization of pi
n, the approximation for p(iDx, nDt) can be established for I]5

as follows

– Final conditions: pi
N+1=0, 15 i5I.

– Boundary conditions: p0
n=pI+1

n =0, 15n5N.
– Discretization scheme, for n=N, . . ., 1:

i=1:
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n−yi

n.

i=I−1:

1
Dt

(pi
n−pi

n+1)−
1

2Dx2 ((n i
n+n i+1

n )(pi+1
n −pi

n)− (n i−1
n +n i

n)(pi
n−pi−1

n ))

+
1

2Dx
yi

n(pi−1
n −2pi+1

n )= ŷ i
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This discretization leads to the following discretized gradient
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3. NUMERICAL EXPERIMENTS

To verify the efficiency of the optimal control method described in the previous section, three
experiment phases have been realized.

Controls by initial and boundary conditions are very similar and two experiments of
simultaneous control were carried out. Control by a distributed viscosity coefficient presents
some difficulties that are pointed out by several numerical studies on the relative model
sensibility. Lastly, the effectiveness of the method is validated by an experiment simultaneously
implementing the three kinds of controls.

3.1. On boundary and initial conditions

Two numerical experiments on control by initial and boundary conditions have been
realized with the following coefficient values

n=1 m2 s−1, L=10 m, T=1 s, N=50, I=20.

The implicit scheme of the discretized equations tends to solve, at each time step, a matrix
system An(Yn) ·Yn=Bn, where An is a tridiagonal matrix which depends on the vector
Yn= (yi

n)i=1,…, n, and Bn is a vector dependent on the previous time step vector Yn−1 and on
the boundary conditions y0

n and yI+1
n . A classical iterative method of double swap, the

so-called Thomas method, is used to solve this kind of system.
In order to produce the data set to be assimilated by the optimal control method, the direct

model (1) is used to compute a solution. The controls used to simulate the data are arbitrarily
chosen and called the ‘true’ controls. Here, ŷ(x, t) is simulated with the ‘true’ controls

y(x, 0)=u(x)=1−
2x
L

for x� (0, L),

y(0, t)=C1(t)=1−
2t
T

for t� (0, T),

y(L, t)=C2(t)=
2t
T

−1 for t� (0, T).

With the knowledge of ŷ, the aim of the optimal control method is now to find the optimal
controls producing the optimal simulation.

3.1.1. Experiment 1. In this experiment, all the data at each grid point are used. To begin,
the more unfavourable situation is used. Initial and boundary conditions are unknown and
take random values (Gaussian noise). The more iterations are performed, the closer the
controls’ values and the ‘true’ controls are. At the end, the conditions that permitted the
simulation of the data set are exactly recovered (see Figures 2 and 3). The results concerning
the right boundary conditions are very similar to the left ones; so they are not presented.
Dataset and optimal simulation are no longer discernible. As shown in Figure 4, the cost
function, J, decreases with iterations until it is an infinitely small quantity.

The cost function is computed by the sum of differences between very close terms. So, when
these differences are no longer significant for the computer (here real*4, i.e. 10e−39), the sum,
and hence the cost function, does not evolve any more and the method stops. For the
numerical capabilities of the computer, the best simulation (the nearest one to the dataset) is
effectively reached.
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Figure 2. Initial simulation and optimal simulation which exactly correspond to the dataset simulation.

3.1.2. Experiment 2. In this second example, a more realistically noised dataset (because of
geophysical, electronic noise, etc.), obtained by a noised solution of the direct model (1)
introducing a Gaussian error component is considered. The dataset becomes more chaotic (see
Figure 5).

The optimization process gives controls close to the desired controls. These optimal
coefficients permit the simulation of the velocity field that is the closest to the noised one.
Figure 6 shows the control found for initial conditions.

These two experiments show the robustness of the method. Following the same discretiza-
tion rules in space and time that we have pointed out, the optimal control method may be used
in more complex situations like 3D Shallow Water Navier–Stokes equations occurring in
ocean circulation models.

Figure 3. Left boundary and initial controls.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 113–128 (1998)
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Figure 4. Variations of the scaled cost logarithm function log10 J and of the scaled function log10 (9J) with the
number of iterations.

3.2. On 6iscosity coefficient

In this part, the optimization of the viscosity coefficient is focused on. It leads to the study
of the influence on the direct model solution, where initial and boundary conditions are
well-known.

In order to simulate the dataset, taking again the situation of Section 3.1 for initial and
boundary conditions, for a pure computation exercise an arbitrary variation of the viscosity
coefficient is introduced

n(x, t)=20
x
L

t
T

+0.1 for (x, t)�Q.

Though this variation has no physical sense, the values of n range from 0.1 to 20.1 m2 s−1.
This leads to a large range of Reynolds number, between 0.1 and 100. It also ensures the

Figure 5. Noised dataset.
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Figure 6. Initial conditions.

stability of the model. The optimal control process allows the exact viscosity coefficient from
which the exact solution has been computed to be found (see Figure 7).

Nevertheless, as shown in Figure 8, the decrease of the cost function is very slow and the
number of iterations is rather high with regard to that obtained when boundary and initial
conditions were optimized. So, the quest for the optimal values of n is rather difficult. One can
also wonder whether the coefficient values have a real influence on the model solution.

Figure 7. Optimal viscosity coefficient in the case of well-known initial and boundary conditions.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 113–128 (1998)
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Figure 8. Variations of the scaled cost logarithm function log10 J and of the scaled function log10 (9J) with n(x, t)
as control.

In trying to answer this question, another experiment has been realized, with n varying
exclusively with space for a better visualization

n(x)=20
x
L

+0.1 for x� (0, L).

In the previous simulation, the optimization process was stopped by the inability of the
computer to distinguish two different solutions. Here, the optimization process is stopped at a
success level for which is arbitrarily considered that the numerical solution y and the dataset
ŷ are no longer discernible. The method is stopped when the norm of the gradient of the cost
function is small enough. Figure 9 shows the optimal behavior in three cases for which the
process is stopped for a threshold value e of 9J(C). With rather close but different values
of the viscosity coefficient taken as control, indiscernible solutions of the model on the first
decimals are obtained. It is shown that the optimization process is efficient if the required
control has a real influence. In this case, the coefficient is more quickly optimized where the
diffusion process is predominant.

To end this reflection concerning the viscosity coefficient influence, the previous problem,
with n as a constant, is looked at again. The dataset is computed with n=5 m2 s−1. The
maximal value of the Reynolds number is around 2. Simulations are performed with different
values of the viscosity. The value of the cost function J is computed for each simulation.
Figure 10 shows that for a large range of n values (from l to 15 m2 s−1), the cost function is
small enough (J50.1) to consider that a rather good simulation is obtained. So, it is not
necessary to accurately optimize this control. A range of values is indeed sufficient.

3.3. Simultaneous optimization by the three controls

The previous sensibility study shows a higher difficulty in optimizing the viscosity coefficient
than the boundary and initial conditions. An optimal control, simultaneously using the three
types of controls, is presented.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 113–128 (1998)
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First, the numerical simulation of the dataset with the ‘true’ controls is realized

y(x, 0)=1−
2x
L

for x� (0, L),

y(0, t)=1−
2t
T

for t� (0, T),

y(L, t)=
2t
T

−1 for t� (0, T),

n(x)=1+5
x
L

for x� (0, L).

In order to perform a numerical improvement and to be clearer on the following purpose,
n is only space dependent. The problem is always the same. It consists of finding the ‘true’
controls again, in order to minimize the cost function. This experiment will show that the
optimal simulation can be obtained by optimal controls different from the ‘true’ controls. The
simultaneous optimization by the three controls leads to the following results:

– The dataset is found by the optimal simulation.
– Initial conditions control are found.
– Boundary conditions controls are not found.
– The viscosity coefficient is not found with accuracy, especially near the boundaries (see

Figure 11).

Figure 9. Optimal viscosity coefficient according to the required accuracy.
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Figure 10. Cost function depending on the constant viscosity coefficient.

A part of the optimal control aim is realized. The dataset is efficiently simulated but with
optimal controls different from the ones expected. It is demonstrated here that there are some
discrete problems for which optimal controls uniqueness is not ensured.

For example, the discretized equation on the right boundary (for i=I) described in Section
2.2 is

Figure 11. Viscosity coefficient and right boundary conditions.
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1
Dt

(yI
n−yI

n−1)−
1

2Dx2 ((nI+nI+1)(yI+1
n −yI

n)− (nI−1+nI)(yI
n−yI−1

n ))

+
1

2Dx
(yI

nyI
n−yI−1

n yI−1
n )=0.

This equation is controlled by the boundary condition yI+1
n and the three viscosity

coefficients nI−1, nI, and nI+1. The three of them are in fact combined together in the control
term (nI+nI+1)yI+1

n . So, as soon as the set (nI, nI+1, yI+1
n ) verifies

(nI+nI+1)yI+1
n = (nI true

+nI+1true
)yI+1true

n ,

it is considered by the algorithm as an optimal set for control. This means that there are many
sets of controls leading to the same direct model solution. The control by boundary conditions
and the control by the viscosity coefficient values on lateral meshes are redundant. To solve this
problem, controls on the discretized equations model have to be pointed out. To uncouple these
controls, controls set have to be chosen.

Here, for example, the boundary conditions can be kept as controls. So, there is no search
to optimize the viscosity coefficient values on the lateral meshes as they are extrapolated from
those taken inside the domain. The boundary conditions values and the viscosity coefficient can
be chosen arbitrarily as controls on all the domain. In this case, the optimal viscosity coefficient
allows the appropriate simulation to be found, even if the boundary conditions are wrong.

4. PERSPECTIVES AND CONCLUSIONS

The optimal control technique applied on a rather simple equation gives useful information in
order to deal with more complex models with in-situ collected data assimilation.

The discretization process is very delicate and must respect several rules

– The discretization scheme is chosen as implicit on the first time step and decentered for the
advection term on the boundaries.

– The controls do not always have a real influence on all the domains of time and space. Here,
where the diffusion process is not preponderant, it is needless to search for the optimal values
of the viscosity coefficient. This conclusion is transposable to other situations of the models
controllability. If a long simulation that focuses on the ultimate state of the system is
considered, it could be meaningless to search for the initial conditions.

– The simultaneous process of optimal control by different types of parameters can be altered
by a deficient discretization that does not ensure the uniqueness of the controls. The
discretized model can be no longer injective.

So, it is necessary to identify the controls and to verify that they have a real and direct
influence on the model, e.g. by computing the directional derivatives of the solution along the
controls. In the present case, the priority is to fit the initial and boundary conditions and then
the functional parameter. In other studies, e.g. Das and Lardner [15], the controlled model is
more sensitive to the functional parameters. After that, it is necessary to point out possible
influences or redundancies between the chosen controls.

In most hydrodynamical models, principally in 3D oceanic circulation models, the viscosity
coefficients’ values are linked to the physical and turbulent state of the system and computed
using a turbulence model. Mellor and Yamada [16] or Nihoul et al. [17] give examples of such
a computation of n by a turbulence model.
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In the present paper, the data assimilation technique of optimal control applied to this
viscosity coefficient gives results that are more than satisfying. So one can wonder whether the
optimization of the viscosity coefficient by a data assimilation method can replace a classical
model of turbulence.

Indeed, it is demonstrated that this variational method is applicable to theoretical experi-
ments. However, we are pessimistic of a more concrete application, particularly for 3D oceanic
circulation models. For a case of a time and space dependence, the control vector size becomes
very large and a reasonable optimization can only be obtained if the data have quality and
quantity. Furthermore, turbulence models are based on more physical considerations and
reduce the free degrees number of the control. So, it is more realistic to use a turbulence model
to determine a viscosity coefficient with a physical sense. All the same, these turbulence models
can be improved using optimal control to fit the modeling constants appearing in some
empirical formulations. Finally, it seems that optimal control cannot replace the turbulence
modeling but can improve it.
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